
Performance Research: Current Status and Future Directions
David H. Bailey (LBNL), Bronis de Supinski (LLNL), Jack Dongarra (Univ. of Tenn.),

Jeff Hollingsworth (Univ. of Mar.), Paul Hovland (ANL), Shirley Moore (Univ. of Tenn.),
Boyana Norris (ANL), Dan Quinlan (LLNL), Daniel Reed (UNC), Allan Snavely (SDSC),

Jeffrey Vetter (ORNL), Patrick Worley (ORNL)
22 Feb 2005

1. Introduction

The Performance Evaluation Research Center (PERC) is one of the Integrated Software
Infrastructure Centers (ISICs) in DOE’s Scientific Discovery through Advanced Comput-
ing (SciDAC) program. Its objective is to develop a science of performance analysis on
high-end scientific computing system and to engineer practical tools that assist in per-
formance analysis, tuning, and optimization. The original PERC activity had four main
focal points: (1) development of benchmarks to serve as targets for performance analysis;
(2) development of tools for analysis and optimization; (3) development of models of
performance, enabling researchers to predict performance on yet-to-be-built systems; and
(4) application of the techniques learned on codes of interest to DOE’s Office of Science
in general and to the SciDAC program in particular.

PERC recently completed its original three-year dispensation, and is now engaged in an
additional two-year activity, known as PERC-2, for which the focus has been modified
somewhat. For instance, there is no longer a focus on developing benchmarks—it was
felt that we have sufficient benchmark tools for the time being, and instead the resources
of the project are focused on updated versions of items (2), (3), and (4) in the preceding
paragraph, and on new research in automated performance tuning and fault tolerance.
The focus in the tools activity has shifted to new paradigms that scale to much larger
numbers of processors—namely 1000 to 10,000 CPUs. The focus in the modeling activ-
ity has been to upgrade the tools that already have been demonstrated so that they are eas-
ier to use and yield more accurate performance predictions. One additional activity, re-
lated to both the tools and applications activities, is the evaluation of existing tools, in the
context of using them to analyze specific codes.

In the first section of this paper, we sketch some of the challenges that lie ahead. Techni-
cal background for these issues is then presented in subsequent sections, which describe
the status of the PERC-2 project and give a few examples of recent research accomplis-
ments. More details on these activities can be obtained on the PERC website
http://perc.nersc.gov (see also the list of references at the end of this paper).

2. Looking to the Future

As we look ahead to the future, we see numerous challenges looming in the performance
arena. These challenges are principally driven by an expected proliferation of larger,
more diverse and more complicated system designs. In this section, we anticipate system
architecture changes and how these changes will impact performance modeling and
analysis, as well as how we plan to assist application developers cope with these issues.

 1

http://perc.nersc.gov/

Most of today’s systems consist of either a large number of single-CPU or dual-CPU
nodes, connected in a commodity-based interconnection network, or else a cluster of
nodes, where each node is a 16- to 64-CPU coherent shared memory RISC multiproces-
sor. An immediate architectural challenge is presented by the re-emergence of vector-
based systems. Further, multicore processors and hyperthreading, in which parallelism is
employed within a single processor chip, are rapidly becoming widespread. Other inno-
vations include programmable functional units, programmable network interface control-
lers, co-processors, field-programmable gate-array systems and other special purpose de-
vices. There may be complicated interactions between architecture and device physics.

One major challenge is that future systems will have many more individual processors.
The BlueGene/L system being installed at Lawrence Livermore National Laboratory will
soon feature 65,536 dual-core compute nodes; larger systems can be expected in the next
few years. Within five years, we almost certainly will see systems with one million indi-
vidual CPUs, probably organized in a hierarchy of nodes and clusters.

Along with huge numbers of CPUs, we will see designs with adaptive voltage scaling and
power consumption. In fact, power consumption is already seen as a critical issue for
high-end computing systems. As a result, applications may soon need to optimize not just
performance, but also power usage.

As computer systems grow in size, as measured by the number of discrete components,
reliability drops, due to the multiplicative effects of failure probabilities. The increasing
architectural complexity of these systems, as well as the reliance (at least partially) on
commodity-based components, also points to a future where faults will be more frequent.
Thus reliability management will need to be integrated into system design, and into per-
formance analysis. In these systems, overall time to solution may be improved by sacri-
ficing raw performance in favor of improved fault tolerance, for example, using real-
number codes with some redundancy to implement fault-tolerant matrix operations. In
addition to design of the reliability libraries, these systems will require some performance
models, in the least, to analyze the trade-offs yielding an optimal program design.

The proliferation and increasing reliance on advances in libraries and system software
will also impact performance research. Reliance on precompiled libraries, for instance,
defeats performance tools that require complete source code access. On the other hand,
perhaps key performance parameters of certain well-known libraries can be stored in a
database, so that such analyses can be reused whenever the libraries are used.

In the performance modeling arena, in work to date we have demonstrated a highly accu-
rate (typically within 5% to 10%), semiautomatic modeling capability. One challenge is
that even on today’s systems, tracing runs generate huge amounts of data and involve a
30X to 100X slowdown in the application being studied. Work to be done includes:

• Retargeting modeling technology to emerging architectures and system designs (this

will be a major challenge);

 2

• Improving usability of the modeling tools, so any interested person can use them;
• Automating the process from data collection to model formation;
• Employing “smart” sampling of the running program;
• Modeling the memory hierarchy more carefully, in order to improve accuracy;
• Efficiently capturing the effect of changing application parameters or system scale;
• Studying and evaluating other approaches to modeling.

With the increasing complexity of the architectures and the increasing size of the sys-
tems, performance modeling can be a powerful tool in code development. Once a code is
written, and identified as performing poorly, it can be very expensive to go back and re-
engineer. Performance models could help developers estimate performance while the
codes are being developed or modified. This usage of modeling requires that models be
easy to generate, easy to update as code evolves, and closely linked to the source code
that the developer is generating, but the models need not be highly accurate. Most current
modeling methodologies focus on high accuracy predictions for procurement and future
technology investigations, not on development. However, performance bounding and
modeling assertion tools, along with the source analysis capability in tools such as ROSE,
are promising examples of the type of technology needed to use performance modeling in
HPC code development. Approximate models linked to the source code will also be use-
ful for pruning the search space in automatic tuning methods.

Most of the currently available performance analysis tools are usable to roughly 1000
processors. However, as emphasized above, future systems will routinely have tens of
thousands of processors, and with systems approaching one million individual processors,
organized in a hierarchy of nodes and clusters. Thus, it is essential to modify existing
tools so that they will be able to handle runs on systems of this scale. This will involve:

 Identifying and removing bottlenecks in existing tools;
 Implementing special versions of tools targeted to very large numbers of nodes;
 Rethinking the existing methodology to gathering and analyzing some types of

performance data, (for example, statistical sampling in the SvPablo tool);
 Making use of low-overhead hardware monitoring now available on memory

chips, switches and network cards;
 Exploiting advanced hardware and OS features for polling and aggregating moni-

toring data.

A related challenge is how to handle the huge volumes of performance data that will be
generated by running programs on future systems. Some approaches that might work in-
clude:

 Dynamic, on-the-fly trace reduction;
 Dynamic, on-the-fly trace analysis;
 Novel large dataset management techniques;
 “Smart” (AI-like) analysis of performance data using multivariate statistical

analysis and machine learning techniques.

 3

The last-mentioned technique is particularly intriguing, as it might permit PERC re-
searchers to leverage ongoing research in other areas of large-scale data analysis.

In our discussions with users, and in spite of all the attempts we have made to make our
tools as usable as possible, and to educate users in the usage of these tools, it is clear that
for most users, the ideal performance tool is one that not only analyzes performance
automatically, but also tunes automatically. We believe that the long-term hope for real-
izing this vision is what we term “generic code optimization.” This means semiautomatic
tools that generate a search space consisting of numerous options for code tuning, and
search for a near optimal solution. We note, for instance, that in a highly parallel envi-
ronment, the testing of numerous options can be done in parallel, with each processor
testing a separate option. Some specific challenges here include:

 Enhancement of automatic code manipulation tools, such as ROSE;
 Automatic run-time algorithmic parameter selection;
 Automatic communication performance analysis;
 Incorporation of performance models into automatic tuning tools;
 Developing new coding techniques and/or programming models that facilitate

automatic runtime tuning;
 Heuristics to handle the combinatorial explosion of tuning possibilities.

3. Status Report: Performance Modeling

The objective of our performance modeling activity is to develop technology to produce,
with only minor effort, a reasonably accurate performance model, namely a formula or a
computer-based tool that can predict the performance of a specific application code on a
specific computer system. Some potential applications of performance modeling include:
(1) simplifying system procurements at large (or small) computer centers; (2) assisting
system designers and operators to better target systems to address certain applications;
and (3) helping individual users understand their performance and project performance
levels on future systems. Recent work in PERC-2 performance modeling includes:

• Making automated modeling tools more robust, able to characterize large applica-
tions running at scale while simultaneously simulating the memory hierarchies of
multiple machines in parallel;

• Porting the requisite tracer tools to multiple platforms;
• Improving performance models by using higher-resolution memory models;
• Adding control-flow and data dependency analysis to the tracer tools;
• Exploring a number of new modeling methodologies;
• Using our tools to develop performance models for certain strategic codes;
• Applying our methodology to make several blind performance predictions on

mission partner applications, targeting most current system architectures;
• Carrying out error analysis to correct some systematic biases encountered as part

of the large-scale blind prediction exercises;
• Adding instrumentation capabilities for communication libraries other than MPI;

 4

• Disseminating the tools and modeling methods to several mission partners, in-
cluding DoD HPCMO and two DARPA HPCS vendors (Cray and Sun), as well as
to the wider HPC community via a series of tutorials.

Much of our modeling methodology depends on memory tracing to acquire application
signatures. Our tools combine these signatures with machine signatures to produce per-
formance predictions for specific codes on specific systems. Because the time dilation of
a full memory trace can be very large, PERC-2 researchers have added sampling in time
and space to the PERC-2 tracing technology. With these approaches, memory tracing
now incurs a slowdown between 30 and 100, an order of magnitude faster than previ-
ously achieved, thus rendering the study of long-running applications feasible. Another
recent improvement is that the MetaSim Tracer feeds the address stream immediately to
cache simulators of several different architectures, thus parallelizing the modeling of the
full set of 26 architectures with only minimal additional slowdown.

In other modeling activity, we have developed a set of metrics and performance models
for evaluating the effectiveness of various run-time reordering transformations. The
model for iteration reordering is a temporal locality hypergraph. The use of this model
involved the development of several new iteration reordering heuristics, as well as the
reinterpretation of an existing heuristic. This work was presented at the Second ACM
SIGPLAN Workshop on Memory System Performance (MSP 2004).

In a separate study, we are studying the use of machine learning techniques to automate
application performance prediction across large parameter spaces, such as architectural
configurations, parallelism or even application input. Initial results, using cache miss
rates as the prediction target, have shown encouraging results. We are currently extend-
ing our work to the performance prediction of parallel applications. We have also im-
plemented a number of methods for either interpolating or directly measuring the ex-
pected memory performance of real loops that are not all random or all stride one, but
some mixture of these as well as other strides. These different options are now built into
the PERC-2 Convolver Graphical User Interface (GUI) tool. The investigation of which
interpolation works best under what circumstances is still being explored.

We have used our modeling tools to develop a performance model of the SciDAC appli-
cation POP (Parallel Ocean Program); we are developing one for GYRO (a gyrokinetic
fusion simulation program). A sample of POP timings versus performance predictions
are shown in the figure below.

We have also applied the framework developed by PERC-2 to the workload of our mis-
sion partner, DOD’s HPCMO, to make a set of roughly 170 blind performance predic-
tions for TI-05, one of their benchmark programs. These automatically generated per-
formance predictions are blind since PERC-2 had access to the machines only via
“probes,” i.e., the results of low-level benchmarks. These predictions averaged about
20% error. With further analysis we discovered that some “errors” were poorly run real
applications, for example, runs in which the system allowed the application to page. Ma-
chine reconfiguration should further reduce these errors.

 5

POP Total Timings POP 1.4.3, x1 benchmark

0

20

40

60

80

100

120

16 32 64 128

Processors

Se
co

nd
s

pe
r S

im
ul

at
io

n
D

ay

Lemieux (R) Lemieux (M)
Blue Horizon (R) Blue Horizon (M)
Longhorn (R) Longhorn (M)
Seaborg (R) SeaBorg (M)
X1 (R) X1 (M)

Our performance modeling tools also support “what if” studies on system design, esti-
mating performance changes that would result if changes were made to the system. In
the figure below, the baseline case is the Parallel Ocean Program (POP) running on an
IBM Power3 system with a Colony interprocessor communication switch. Case 1 indi-
cates how the performance characteristics would change if the switch had the Colony la-
tency but the Quadrics bandwidth; Case 2 indicates Quadrics latency and bandwidth;
Case 3 indicates Quadrics latency but Colony bandwidth; Case 4 indicates the Colony
latency and bandwidth, but with an Alpha ES640 processor and memory system; Case 5
indicates the Quadrics switch with the Alpha ES640 processors and memory system.

 6

4. Status Report: Performance Tools

The PERC-2 performance tool activity is developing effective and highly usable tools
that can analyze performance on high-end scientific systems. Also included here are
tools that can make certain required modifications to user codes that will increase runtime
performance. Recent PERC-2 work in performance tools includes the following:

• A new release of the PAPI cross-platform hardware performance counter library;
• Enhancements to the KOJAK, SvPablo, and PBT tools;
• Comparative tool assessment in the context of SciDAC applications;
• Addition of several loop optimizations to ROSE compiler infrastructure;
• Addition of new program analysis capabilities and transformation specification

mechanisms to ROSE;
• Extensions to the dynamic stream detection tool (dsd) for complex memory refer-

ence pattern identification;
• Shared memory application phase detection;
• Automated tuning and search extensions for ATLAS;
• Stratified population sampling for large-scale measurement;
• Fault measurement and power consumption measurement integration;
• Release and enhancements to the mpiP communication profiling tool.

The PAPI library is a hardware performance monitor application programming interface.
It provides a standard interface across multiple vendor platforms to the hardware per-
formance counters available on most modern microprocessors. These counters provide a
window on the processor by enabling access to relevant information such as operation
counts, cache and memory behavior, and branch behavior. PAPI Version 3, a complete
rewrite of PAPI, was released in November 2004. New features include much lower
overheads on counter start, stop and read operations; full support for named native
events; interrupt on overflow and statistical profiling of multiple simultaneous events;
memory hierarchy information; shared library mapping; complete thread safety and better
thread support. The PAPI library may be used directly by the application programmer.
More typically, PAPI is used as the basis for an end-user performance analysis tool, such
as the performeter tool illustrated in the figure below, which shows the on-the-fly per-
formance profile (as the code is running) of a shallow water benchmark running on an
Intel Pentium 4 system. The yellow curve shows the floating-point operation rate, and
the red curve shows the L1 data cache miss rate.

Current work in PAPI focuses on the extension of hardware performance monitoring to
off-processor counters, such as those found on memory chips, network switches, and
network interface cards. In addition, we are investigating the use of performance count-
ers for estimation of power consumption. While CPU cycles are no longer a precise indi-
cator of power consumption, a combination of several event counts can be used to esti-
mate a processor’s power consumption. This estimate can be calibrated with less fre-
quent reading of thermal diodes, the reading of which has much higher latency.

 7

KOJAK 2.0 is a new performance tool suite that collects and analyzes performance data
from high performance applications written in Fortran 77/90/95 or C/C++. Performance
data are collected automatically using a combination of source code annotations or binary
instrumentation and hardware counters. The analysis tools use pattern recognition to
automatically convert the raw performance data into performance bottleneck information.
For example, a pattern based on the ratio of floating point to memory operations applied
to nested loop constructs can automatically detect the occurrence of memory bound loops
that might benefit from outer loop unrolling optimizations not always performed by the
compiler. Patterns based on communication behaviors can detect inefficiencies such as
communication blocking during pipeline refill for wavefront algorithms.

SvPablo is a graphical environment for instrumenting source code, as well as capturing
and browsing dynamic performance data at the source level. The PERC-2 activities for
SvPablo have centered largely on development of new techniques to enable efficient use
of systems containing thousands or tens of thousands of processors. We are evaluating
two complementary techniques for large systems: stratified population sampling and
power/temperature assessment. We are developing an adaptive performance monitoring
system using stratified population sampling techniques, which enables accurate perform-
ance measurement of very large systems by sampling the behavior of only a small num-
ber of tasks, but with greatly reduced overhead. We are integrating this system into
SvPablo, which will present sampling data and error estimates due to sampling.

 8

The ROSE compiler project focuses on the optimization of existing scientific applications
in C and C++. Using ROSE, source-to-source translators can be easily built to automate
customized optimizations more sophisticated or more domain-specific than those pro-
vided within vendor compilers. With such translators, high-level abstractions can be used
to trigger the generation of low-level platform specific code to provide high performance
while still providing the simplicity and productivity of high-level of abstractions for the
developer. Using ROSE to automate the generation of efficient low-level code has dem-
onstrated typical improvements of 5-6X for high-level abstractions and up to 15X for
some specialized high-level array abstractions. Loop optimizations added to ROSE in-
clude support for loop fusion, fission, tiling and unrolling. ROSE now includes whole
program analysis support through persistent storage of analysis results in an SQL data-
base. New mechanisms support the specification of transformations and make such trans-
formations more accessible to people without a formal compiler background.

In some potentially far-reaching work, we have pioneered the development of automated
performance tuning in the ATLAS system to generate tuned BLAS for specific architec-
tures. This approach generates a search space of algorithms (typically in C or another
high-level language), pruned as much as possible by performance models, and then
searches the space by compiling and running the algorithms in the search space. Recent
work has focused on development of an appropriate search heuristic, based on the
Nelder-Mead simplex method, to replace the global search used in ATLAS. A sample of
using the simplex method is shown in the figure below. Here the linear algebra routine
DGEMV (which performs matrix-vector multiplication) was analyzed to see which of a
large number of two-dimensional block options was best. We specify a constraint that
the block size should be greater than or equal to the unrolling amount. This allows us to
prune a large number of points out of the search space. Then, using the simplex method
we can find an “optimal” point in less than 10 minutes (versus 30 hours for the exhaus-
tive search). The figure shows the results of 10,000 runs. 8% of the runs found the true
optimum (338 Mflop/s), while on average the value was 87% of the true optimum.

5. Status Report: Tool Evaluation

One of the new activities introduced in PERC-2 is the evaluation of performance analysis
tools and methodologies developed both within and outside the project. We perform in-
depth performance analyses of SciDAC application codes, applying a number of different
tools and methodologies to the same code, then comparing the strengths and weaknesses
of the tools and methodologies. Two plots below (one on page 10, the other on page 11)
show typical data that we have gathered in this effort. The first shows the parallel effi-
ciency of three variants of the GYRO benchmark (B1-std, B2-cy, and B3-gtc), running on
the Seaborg system at LBNL, based on a 16-CPU version as unit efficiency. The second
is an analysis of the B1-std benchmark. It shows that the fraction of total runtime spent
in “Coll_tran,” a key array transposition operation, balloons as the size of the system in-
creases from 256 to 1024 processors. This could be caused by a performance problem in
the utility used to implement the data exchange, or simply reflect that the scalability limit
is being reached for this benchmark problem. This represents the type of performance
question being asked of the performance tools as part of the evaluation.

 9

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

16 32 64 128 256 512 1024

Number of Processors

Pe
rc

en
ta

ge

IO

Extra

Field

Lin-RHS

Coll_tran

Collision

NL_tran

Nonlinear

 10

Paralle l Efficiency On Seaborg

0.00

0.20

0.40

0.60

0.80

1.00

1.20

10 100 1000 10000

Num ber of Processes

Pa
ra

lle
l E

ff
ic

ie
nc

y B1-std

B2-cy

B3-gtc

6. Status Report: PERC Collaborations with SciDAC Scientific Projects

PERC continued to work closely with select SciDAC application projects and ISICs.
Specifically we have assisted Collaborative Design and Development of the Community
Climate System Model for Terascale Computers (CCSM) in determining optimal algo-
rithmic settings and other code optimizations on important Office of Science platforms.
We have analyzed and modeled applications of the Plasma Microturbulence Project
(PMP), Shedding New Light on Exploding Stars: Terascale Simulation of Neutrino-
Driven SuperNovae and Their NucleoSynthesis (TSI), Terascale Optimal PDE Simula-
tions (TOPS), the Terascale Simulation Tools and Technology Center (TSTT) and Ena-
bling Higher Performance for the Lattice Quantum Chromodynamics (QCD).

PERC researchers helped determine optimal algorithmic settings for the Community At-
mosphere Model (CAM), a key component of the CCSM, when running the Intergov-
ernmental Panel on Climate Change (IPCC) scenario runs on the IBM p690 cluster at
ORNL, thus accelerating the completion of this milestone. Optimization studies were also
updated for the standard benchmark problems on the following systems as CAM was
ported or as the systems changed: (1) IBM p690 cluster, especially as the SP Switch2
network was replaced by the HPS interconnect and as support for task and memory affin-
ity became available; and (2) Cray X1. Similar studies are ongoing on the SGI Altix,
Cray XD1, and the Cray XT3. PERC researchers also completed optimization studies for
the Parallel Ocean Program (POP), another CCSM component model, on the Cray X1
and the p690 cluster. The graphs below show results of tuning performed based on rec-
ommendations from PERC researchers. The first is based on an earlier version of the
CAM code, and the second is based on a recent version.

 11

For PMP, PERC researchers have applied Active Harmony, a software tool supporting
distributed execution of computational objects, to GS2, a gyrokinetic turbulence simula-
tor. The result of this effort has been a 2.3 to 3.4X speedup of GS2 for a common con-
figuration used in production runs. PERC researchers also studied the performance of
GYRO, an Eulerian gyrokinetic-Maxwell solver. In these studies, scaling behavior and

 12

the impact of task and memory affinity were examined on both the IBM SP3 system at
NERSC and the IBM p690 cluster at ORNL. Finally, PERC researchers created a per-
formance model of GYRO and validated it on four platforms at ORNL (Cray X1, SGI
Altix, IBM SP3, and IBM p690). This model will provide insight into understanding the
performance on new platforms, such as the Cray XD1 and the Cray XT3.

For TSI, PERC researchers ported and optimized the EVH1 hydrodynamics code on the

ERC researchers analyzed the performance of a TOPS-TSTT mesh smoothing applica-

ased on a performance model of QCD’s MILC application created by MILC develop-

eferences

e list here a few sample recent references. Additional reports and papers that we have

Cray X1, achieving excellent performance for large problems. The EVH1 performance
analysis was completed for up to 256 processors on all current target platforms. For the
ZEUS-MP CFD code, researchers completed a timing analysis on all target architectures
except the SGI Altix for up to 128 processors. ZEUS-MP has also been instrumented
with SvPablo on the p690 cluster, in preparation for detailed performance analyses.

P
tion using the Performance Bounding Tool (PBT), the TAU performance analysis system,
and the Performance Application Programming Interface (PAPI). The three dominant
phases of the application are gradient computation, Hessian computation, and sparse ma-
trix-vector multiply. After applying runtime reordering transformations, the sparse ma-
trix-vector multiply achieves 90% of the peak performance imposed by the memory
bandwidth limit. The gradient and Hessian computations, as optimized by PERC re-
searchers, are not memory bandwidth limited and achieve approximately 25% of machine
peak. We are currently investigating the performance limiters of these computations.
This application was also modeled using the Metasim Convolver. The convolver accu-
rately predicted the two-fold performance improvement achieved through runtime reor-
dering.

B
ers, PERC researchers have conducted performance analyses communicate-bound and
compute-bound cases on Pentium-3 Linux clusters. We used SvPablo to collect detailed
performance data on different aspects of the code, and identified the key fragments that
affect code performance. The performance study results have been presented at SciDAC
QCD meetings and have helped the QCD community to understand MILC’s performance
behavior on different execution platforms and configurations.

R

W
produced are available at http://perc.nersc.gov.

1. D.H. Ahn and J.S. Vetter, “Scalable Analysis Techniques for Microprocessor Performance

2. erformance Modeling: Understanding the Present
Counter Metrics,” Proc. SC 2002, 2002.
David H. Bailey and Allan S. Snavely, “P
and Predicting the Future,” Proceedings of SIAM PP04, 2005, to appear. The full paper is
available at http://crd.lbl.gov/~dhbailey/dhbpapers/dhb-perf-model.pdf.

 13

http://perc.nersc.gov/
http://crd.lbl.gov/%7Edhbailey/dhbpapers/dhb-perf-model.pdf

3. Laura Carrington, Nicole Wolter, Allan Snavely, and Cynthia Bailey Lee, “Applying an
Automated Framework to Produce Accurate Blind Performance Predictions of Full-Scale
HPC Applications,” DOD User Group Conference 2004, Williamsburg, June 2004.

4. Zizhong Chen and Jack Dongarra. “Numerically Stable Real-Number Codes Based on Ran-
dom Matrices,” 2004 IEEE Information Theory Workshop, San Antonio, Texas, October 24-
29, 2004.

5. I-Hsin Chung, Jeffrey K. Hollingsworth, “Using Information from Prior Runs to Improve
Automated Tuning Systems,” Proceedings of SC'04, Nov. 2004.

6. I-Hsin Chung, Jeffrey K. Hollingsworth, “Automated Cluster-Based Web Service Perform-
ance Tuning,” Proceedings of IEEE Conference on High Performance Distributed Comput-
ing (HPDC), June 2004.

7. Thomas H. Dunigan, Jr., Jeffrey S. Vetter, James B. White III, and Patrick H. Worley, “Per-
formance Evaluation of the Cray X1 Distributed Shared Memory Architecture,” IEEE Micro
(in press).

8. Jeff Hollingsworth, Allan Snavely, Simone Sbaraglia, K Ekanadham, “EMPS: An Environ-
ment for Memory Performance Studies,” IPDPS 2005, Next Generation Software Workshop,
to appear.

9. Shirley Moore, Felix Wolf, Jack Dongarra, and Bernd Mohr, “Improving Time to Solution
with Automated Performance Analysis”, Second Workshop on Productivity and Performance
in High-End Computing (P-PHEC), held in conjunction with the 11th International Sympo-
sium on High-Performance Computer Architecture (HPCA-2005), San Francisco, February
13, 2005.

10. Daniel Quinlan, Markus Schordan, Qing Yi and Bronis de Supinski, “Semantic-Driven Paral-
lelization of Loops Operating on User-Defined Containers,” 16th Annual Workshop on Lan-
guages and Compilers for Parallel Computing (LCPC) College Station, TX, USA, October
2-4, 2003.

11. Michelle Mills Strout and Paul D. Hovland, “Metrics and Models for Reordering Transforma-
tions,” in Proceedings of the Second ACM SIGPLAN Workshop on Memory System Perform-
ance (MSP), pages 23-34, June 8, 2004.

12. Mustafa M. Tikir, Jeffrey K. Hollingsworth, “Using Hardware Counters to Automatically
Improve Memory Performance, Proceedings of SC2004, Nov. 2004.

13. J.S. Vetter and M.O. McCracken, “Statistical Scalability Analysis of Communication Opera-
tions in Distributed Applications,” Proc. ACM SIGPLAN Symposium on Principles and Prac-
tice of Parallel Programming (PPOPP), 2001.

14. J.S. Vetter and P. Worley, “Asserting Performance Expectations,” Proc. SC 2002, 2002.
15. P. H. Worley, “Federation Performance on the ORNL p690 Cluster,” ScicomP 10, Texas Ad-

vanced Computing Center, Austin, Texas, August 12, 2004.
16. P.H. Worley, “The Performance Evolution of the Parallel Ocean Program on the Cray X1,”

Performance and Productivity of Extreme-Scale Parallel Systems, LACSI 2004, Eldorado
Hotel, Santa Fe, New Mexico, October 12, 2004.

17. Qing Yi and Dan Quinlan, “Applying Loop Optimizations to Object-Oriented Abstractions
Through General Classification of Array Semantics,” In the 17th International Workshop on
Languages and Compilers for Parallel Computing, West Lafayette, IN, USA, September
2004.

 14

	Performance Research: Current Status and Future Directions
	
	4. Status Report: Performance Tools

